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Abstract Usually gravity can be neglected for planing vessels at very high planing speed. However, if
the planing speed becomes lower, the influence of gravity must be considered. A 2D+t theory with gravity
effects is applied to study the steady performance of planing vessels at moderate planing speeds. In the
framework of potential theory, a computer program based on a boundary-element method (BEM) in two
dimensions is first developed, in which a new numerical model for the jet flow is introduced. The spray
evolving from the free surface is cut to avoid the plunging breaker to impact on the underlying water.
Further, flow separation along a chine line can be simulated. The BEM program is verified by compar-
ing with similarity solutions and validated by comparing with drop tests of V-shaped cylinders. Then the
steady motion of prismatic planing vessels is studied by using the 2D+t theory. The numerical results are
compared with the results by Savitsky’s empirical formula and the experiments by Troesch. Significant
nonlinearities in the restoring force coefficients can be seen from the results. Three-dimensional effects are
discussed to explain the difference between the numerical results and the experimental results. Finally, in
the comparison of results at high planing speed and moderate planing speed, it is shown that the gravity
not only affects the free-surface profile around the hull, but also influences the hydrodynamic force on the
hull surface.

Keywords Boundary-element method · Gravity effect · Planing vessel · Three-dimensional effect ·
2D+t theory

1 Introduction

Planing vessels are used as patrol boats, sportfishing vessels, service craft, ambulance craft, recreational
craft and for sport competitions. When a vessel is planing, it is mainly supported by hydrodynamic loads.
A length Froude number of 1–1.2 is often used as a lower limit for planing conditions. There are many
important dynamic stability problems associated with planing vessels such as porpoising stability. A com-
prehensive presentation of hydrodynamic aspects of planing vessels can be found in [1, Chapter 9]. Strongly
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nonlinear phenomena will appear during planing including spray jet, breaking waves etc. Therefore it is
hard to apply conventional linear theories for displacement vessels to study planing hulls. In order to
accurately predict the hydrodynamic behavior of a planing vessel, nonlinear effects must be included in
the analysis.

Both experimental and theoretical approaches have been used to study the hydrodynamic features of
planing vessels ever since the start of the research on planing problems many decades ago. The experiments
by Sottorf [2,3] were among the earliest experimental studies on planing vessels. Savitsky [4] presented
empirical equations for lift, drag and centre of pressure for prismatic planing hulls, based on experimental
data. Later, Altman [5] did forced-oscillation experiments of prismatic hulls and Fridsma [6,7] conducted
experiments for prismatic hulls in regular and irregular waves. Troesch [8] studied experimentally forced
vertical motions at low to moderate planing speeds of prismatic planing hulls.

Some attempts have been made to analytically solve the problem by linearization, e.g. in [9–11]. Due
to strong nonlinearities in planing, the application of these linear solutions is quite limited. Numerical
approaches were introduced in recent decades. Vorus [12,13] developed a two-dimensional theory by
distributing vortices in a horizontal plane at the mean free surface. Lai [14] solved the planing problem
in three dimensions using a vortex lattice method. Zhao and Faltinsen [15] studied the two-dimensional
water-entry problem by using a boundary-element method (BEM) and then Zhao et al. [16] further applied
2.5D theory to study high-speed planing hulls by solving the 2D water entry of a ship cross-section in an
Earth-fixed cross-plane. However, all the numerical methods mentioned above assume very high speed,
or infinite Froude number for the planing vessel, so that gravity is neglected in their analyses. Lai [14]
examined gravity effects for some cases by adding hydrostatic force to the hydrodynamic lift force. This
is not a full consideration to gravity effects, i.e., one ought to also consider the influence of gravity on the
free-surface elevation and the associated pressure distribution on the hull as well.

2.5D or 2D+t theory has been proved to be a very efficient approach to solve strongly nonlinear hydro-
dynamic problems, where there is often violent deformation of the free surface and a large change of
wetted body surface. In those problems, traditional linear theories can no longer provide good predictions
and fully three-dimensional numerical methods may need rather long times to complete the simulation.
Fontaine and Tulin [17] gave a good review of the evolution of 2D+t nonlinear slender-body theory. Maruo
and Song [18] followed a 2D+t theory to simulate the steady motion, as well as unsteady heave and pitch
motions in waves, of a frigate model. The generation of spray and breaking bow waves were well simulated.
However, flow separation was not included. Further, the local deadrise angles of the ship cross-section were
rather large, which strongly facilitates the computations. Lugni et al. [19] presented results of the steady
wave elevation around a semi-displacement monohull with transom stern. They compared the results of
linear 3D and nonlinear 2D+t computations and proved the efficiency of the 2D+t theory. CFD can also
be combined with 2D+t theory. Tulin and Landrini [20] used the SPH method in a 2D+t fashion to study
the breaking waves around ships.

In the present study, by following Zhao et al.’s method [16], a new numerical model that completely
includes gravity effects is developed for the two-dimensional water-entry problem, and the 2D+t theory
is then applied to obtain the solution for the planing problem. The very thin jet along the body surface
is cut in a different way than that in [15] to obtain a stable solution with gravity effects. When gravity is
considered, a spray will evolve from the free surface and bend down to cause plunging breaking waves.
To make the numerical solution possible within potential theory, the spray is cut before it touches the free
surface underneath. The flow-separation model is based on [21]. This 2D model is verified and validated
by comparing with similarity results in [15], and with the experiments by Greenhow and Lin [22] and by
Aarsnes [23].

In this paper, prismatic planing vessels in steady motion are considered. Given a constant heave or pitch,
the resulting hydrodynamic forces are calculated and thus the restoring-force coefficients for the dynamic
heave and pitch motions can be found. The wetted-surface lengths will be compared with experimental
results. The vertical force coefficients, pitch-moment coefficients will be compared with the experiment as
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well as results by Savitsky’s empirical formula. Part of the three-dimensional (3D) effects is estimated by
applying an analogy between the planing surface at very high speed and a lifting surface in infinite fluid.
However, this effect does not account for gravity, which causes an important 3D effect at the transom.
Finally, the gravity effects will be discussed by comparing results for high planing speed and moderate
planing speed.

2 Theoretical descriptions

2.1 2D+t theory in the analysis of a prismatic planing vessel

In a ship-fixed coordinate system, 2.5D theory means that the two-dimensional Laplace equation is solved
together with three-dimensional free-surface conditions. If the attention is focused on an Earth-fixed cross-
plane, one will see a time-dependent problem in the 2D cross-plane when the vessel is passing through
it. So the theory is also called 2D+t theory. For a prismatic planing hull, the hull cross-section does not
change along the longitudinal direction, so it is more convenient to use the formulation of 2D+t theory,
which means that the time-dependent 2D problem is first solved in the Earth-fixed cross-section and then
the results will be utilized to obtain the force distribution along the planing hull.

In an Earth-fixed coordinate system, a prismatic planing vessel with small trim angle τ is moving through
an Earth-fixed cross-plane with speed U, as shown in Fig. 1. At time t = t0 the cross-section is just above
the free surface; at time t = t1 the cross-section is penetrating the free surface; at time t = t2, flow separates
from the chine line. Thus one can see a process with a V-shaped cross-section entering the water surface in
this cross-plane with a speed

V = Uτ . (1)

For a steady problem, this procedure will be the same in different cross-sectional planes. So one can just
solve the water-entry problem in one plane and the force distribution along the vessel can be obtained by
using the relation between time and x-coordinate, i.e.,

x = U(t − t0), (2)

where x is the x-coordinate of the hull-fixed coordinate system with the origin at the intersection of keel
and calm water, as shown in Fig. 2.

Figure 2 shows the body-fixed Cartesian coordinate system for a prismatic hull with the x-coordinate
pointing toward the stern and the y-coordinate toward the starboard. The z-coordinate is upward with
z = 0 plane in the mean free surface. The distance of the centre of gravity (COG) above the keel line
measured normal to the keel is vcg and the longitudinal distance of COG from the transom measured
along the keel is lcg. The heave motion η3 is defined positive upward and the pitch motion η5 is defined
positive as the bow goes up. The deadrise angle β is constant along the hull.

Three wetted lengths are defined, i.e., Lc, Lk and L, where Lc is the chine-wetted length, Lk is
keel-wetted length and L is the mean wetted length. B is the beam of the vessel. Then the mean

Fig. 1 Application of
2D+t theory to a
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Fig. 2 Hull-fixed coordinates and some definitions

wetted-length beam ratio is defined as

λw = L/B = 0.5 · (Lk + Lc) /B. (3)

In planing motion, the free surface will rise on both sides of the V-shaded bottom, as shown in the view of
section A–A in Fig. 2. Point C is the intersection of the bottom surface and a line which is tangential to the
spray root and normal to the bottom. A connection of all such intersection points on each cross-section will
form a spray-root line, as shown in the left figure in Fig. 2. This implies that the spray-root line is different
from the mean water line, which is the intersection line of the bottom surface and the undisturbed water.
The x-position where the chine wetting starts is denoted as xs and called the chine-wetted position. In front
of this position, the wetted area is defined to be the body surface below the spray-root line. Further, one
has

Lk − Lc = xs. (4)

If λw and xs are known, the keel-wetted length and chine-wetted length can be solved by using Eqs. 3
and 4.

2.2 Two-dimensional time-dependent problem

The initial-boundary-value problem in the Earth-fixed 2D cross-plane can be described as follows. The
governing equation for the flow in this plane is

∂2ϕ

∂y2 + ∂2ϕ

∂z2 = 0, (5)

where ϕ(y, z, t) is the disturbance velocity potential in the y–z plane. The body boundary condition is given
by

∂ϕ

∂n
= V̄ · n̄ on the body surface, (6)

where n̄ is the 2D normal vector pointing out of the fluid domain, and V̄ is the velocity of the body
with positive direction upward. Further, fully 2D nonlinear free-surface kinematic and dynamic boundary
conditions are satisfied at the free surface, i.e.,
Dy
Dt

= ∂ϕ

∂y
,

Dz
Dt

= ∂ϕ

∂z
on the free surface, (7)

Dϕ

Dt
= 1

2
|∇ϕ|2 − gz on the free surface. (8)
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At distances far away from the body, the disturbance velocity potential goes to zero; hence

|∇ϕ| → 0 at infinity. (9)

By using Green’s second identity, the velocity potential at a field point P within the fluid can be
represented by

2πϕP =
∫∫

S

[
ϕQ

∂G (P, Q)

∂nQ
− G (P, Q)

∂ϕQ

∂nQ

]
dsQ , (10)

where G(P, Q) = log r(P, Q) and r(P, Q) is the distance from a source point Q on S to the field point P. S
means the whole boundary for the fluid domain which includes SB, SF , SC, referring to the body surface,
the free surface and the control surface far away from the body, respectively. By letting the field point P
approach S, an integral equation can be obtained. Assume at a certain time instant ϕ is known on the free
surface, and ∂ϕ/∂n on the body surface is known from Eq. 6; then by solving the resulting integral equation,
the velocity potential ϕ on the body surface and normal velocity ∂ϕ/∂n on the free surface will be known.
The free-surface elevation and potential ϕ on the free surface for the next time instant can then be updated
by using Eqs. 7 and 8. Given initial conditions for ϕ on the free-surface and the free-surface elevation, one
can just follow this time-marching procedure to solve the water-entry problem.

From Bernoulli’s equation, the pressure on the body surface can be evaluated from

p − pa = −ρ

(
gz + ∂ϕ

∂t
+ 1

2
|∇ϕ|2

)
, (11)

where pa is the atmospheric pressure. The hydrostatic pressure −ρgz is included so that the influence of
gravity on the hydrodynamic force on the body can be incorporated. The term ∂ϕ/∂t has been evaluated
by solving a boundary-value problem for ∂ϕ/∂t + V̄ · ∇ϕ. A detailed description is given in [24].

Initially, the velocity potential is zero on the undisturbed free surface. However, because there is a rapid
change in the free-surface profile after the water entry of a section with small deadrise angle, it requires
great computational efforts to accurately simulate such a change. Alternatively, one can just employ
approximate analytical solutions without the effect of gravity to give the initial conditions. The argument
is that, at the initial stage of water entry, the scale of the submerged cross-section is very small and then the
Froude number of the local flow is very large, which means that gravity gives little contribution. Maruo and
Song [18] used Mackie’s analytical solution [25] for the water entry of a sharp wedge as the initial condition,
because the deadrise angles of their ship sections were large. Similarly here, Wagner’s approximation for
the water entry of sections with a blunt bottom can be used to provide the initial conditions. When the
wetted area due to spray is neglected, Wagner’s solution (see [26]) results in the free-surface profile

ζ(y) = Vt0
c

y arcsin

(
c
y

)
− Vt0, for y > c, (12)

where c is the half wetted width and expressed as

c = πVt0
2 tan β

(13)

and β is deadrise angle. Further, Vt0 is the initial submergence of the wedge apex relative to the undisturbed
free surface. The velocity potential on the free surface is given by

ϕ = 0 on z = ζ (y) . (14)

Hence, Eqs. 13 and 14 are used as initial conditions. With those initial conditions, the numerical calculations
will soon come to a stable state in the time-integration procedure, in which a thin jet will grow up along
the port and starboard sides of the bottom surface and then a detailed description of the spray root can be
given.
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3 Numerical treatments in the calculations

Based on Eq. 10, the BEM will be used to numerically solve the boundary-value problem described by
Eqs. 5–9. The boundary surfaces SB, SF, SC are discretized into NS, NF , and NC line elements, respectively,
and the values on each element vary linearly. Then the integral equation obtained from Eq. 10 leads to an
algebraic equation system that can be solved to obtain the unknown ϕ on the body surface and ∂ϕ/∂n on the
free surface. A fourth-order Runge–Kutta method is used to integrate Eqs. 7 and 8 in time. A third-degree
five-point smoothing technique is applied on the free-surface profile and ϕ on the free surface to eliminate
the sawtooth instability. A cubic-spline regriding technique is utilized to generate uniformly distributed
elements on the free surface at each time step.

3.1 Numerical model for jet flow

As the V-shaped section falls down, a very thin jet is formed along each side of the body surface when the
deadrise angle is small. Because of the very small jet angle between the body surface and the free surface
in such a case, numerical errors near the intersection point can easily cause the points on the free surface
near the tip point to move to the other side of the body surface and the calculation may thus break down.
So care must be taken to control the jet flow near the intersection point. One way is to cut the very thin jet.

There are different ways to do the cut-off. Zhao and Faltinsen [15] introduced a small element normal to
the body surface. Kihara [27] controlled the contact angle to be always smaller than a threshold value and
introduced a new segment on the free surface. Here a method similar to that of [27] is introduced because
it is easier to control the free surface when gravity is considered.

The cut-off model is shown in Fig. 3. A, B and C are points on the free surface. When the distance d
from point B to the body surface is smaller than a threshold value d0 , the area enclosed by ABCD is cut
by introducing a new segment DC on the free surface. The value of the distance d is regarded as negative
when B is on the other side of the body surface. This procedure controls the jet flow both when the jet is
too thin and when the points on the jet cross to the inside of the body surface.

By using this cut-off model, the thin jet can be kept longer than when using the cut-off model of [15].
This is not advantageous for the pressure distribution, because large pressure oscillation can happen in
the long thin jet area due to numerical errors. However, when the gravity effect is considered, the flow on
the top of the jet will more likely be affected by gravity. In order to simulate the influence of gravity, a
reasonable part of the jet top must be kept. The pressure oscillations will be reduced when the elements
on the body and the free surface near the jet tip are made smaller and in comparable size.

3.2 Cut of spray

When gravity is accounted for, a thin spray can evolve from the free surface and then overturn and hit the
free surface underneath. If this happens, the calculations break down. The reason is that the penetration
of the free surface causes circulation, i.e., vorticity, and thus the potential theory, can no longer be used
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to describe the fluid flow. However, the spray gives little contribution to the pressure on the body. On the
other hand, even if the splash happened, the vorticity generated by the splash would influence a limited
area in the flow and could only have a small effect on the body. Therefore, the spray can just be neglected
by cutting it before it touches the free surface underneath. In such a way the numerical calculations can be
continued until the completion of the whole water-entry process.

The cutting scheme is shown in Fig. 4. When the spray grows long enough and before its tip (point B)
touches the free surface, a part of the spray is cut. The cut line is normal to the upper free surface AB.
Point C is the highest point on the lower free surface. The cut line goes through the middle point between
B and C, thus the spray can be cut from around the middle of it. That part of the spray which is cut off, is
assumed to be independent of the remaining part of the fluid and its motion is only influenced by gravity.
This assumption can be confirmed by the results in the example presented in Figs. 5 and 6. The deadrise
angle β is 45◦ and the constant water-entry speed is V = 1.0 m s−1 in this example. It can be seen that the
cutting does not change the free-surface profile in the remaining part and the vertical force F3 per unit
length on the section is not influenced by the cutting as well.

3.3 Flow separation from hard chine

Because there is a sharp corner at the knuckle point, the flow has to separate from the chine. By following
Zhao et al. [16,21], the flow is assumed to leave tangentially from the knuckle, and a local analytical
solution is employed to give an approximation to the flow very close to the separation point.

The local solution predicts an infinite pressure gradient at the separation point, i.e., a fluid particle at the
separation point will have an acceleration much larger than the gravitational acceleration. So the effect of
gravity will be less important in the vicinity of the separation point. More detailed descriptions about this
method are given in [21]. The validation of this approach when gravity is included can be seen from the
examples given in the following section.

4 Verification and validation of 2D results

The theory and numerical implementation of the two-dimensional problem will be verified by comparing
with similarity solutions and validated by comparing with the experiments by Greenhow and Lin [22] and
Aarsnes [23].
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angles β = 10◦, 20◦, 30◦ and 45◦. (a), (c), (e), (g) Free-surface profile; (b), (d), (f), (h) pressure distribution

The results are first compared with the similarity solutions given in [15] where gravity is neglected and
the drop speeds of 2D V-shaped cross-sections are constant. In those calculations, gravity is neglected in
order to compare with the similarity solutions. In Fig. 7(a–h), the pressure distribution on the body surface
and the free-surface profile by the numerical calculations are compared with the similarity solutions for
deadrise angles β = 10◦, 20◦, 30◦ and 45◦, respectively. Good agreements can be seen. Because the deadrise
angle for planing vessels is usually small, only the results for relatively small deadrise angles are shown.
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Fig. 8 Free-surface elevation by the numerical calculation compared with the drop tests by [22]. (a) t = 0.200 s;
(b) t = 0.205 s; (c) t = 0.210 s; (d) t = 0.215 s

Further, it is more difficult to obtain good numerical results for smaller deadrise angles than for larger
deadrise angles. The reason is that a smaller deadrise angle causes a faster and thinner jet flow that is
more difficult to control numerically. Therefore, good agreements for smaller deadrise angles show the
robustness of the numerical program.

Then the free-surface profiles during the free water entry of a 30◦ V-shaped section in the experiment
by Greenhow and Lin in [22] are compared with numerical results as shown in Fig. 8(a–d). Free-surface
profiles obtained by the numerical simulations are plotted in the photos taken at four different time
instants. The beam of the section is 0.218 m. The water-entry speed has been estimated from the photos.
A decelerated motion can be observed. The initial time instant is t = 0.200 s when the wedge apex just
touches the water surface. At t = 0.205 s, a very thin jet is formed along the body surface; at t = 0.210 s
the spray root has just passed the knuckle; at t = 0.215 s, the top of the jet turns over, which implies
the existence of the gravity effect. The discrepancies in the figures can be explained as follows. Firstly,
the information about the falling speed is not given in the experiment report, so the speed can only be
roughly estimated from the photos. Errors may be introduced during the estimation. Further, as stated in
the experiment report, the timing system in photographing can have an error of ±0.005 s, which may also
affect the agreement. However, generally speaking the numerical simulations show good predictions of
the free-surface profile. This proves the validity of the numerical models, including the jet model and the
flow-separation model.

Further, in Fig. 9(a, b), the acceleration and the vertical force during a free drop test from the exper-
iments by Aarsnes [23] are shown and compared with the present numerical results. The acceleration is
calculated at each time step by using Newton’s second law. The parameters of the V-shaped model in the
experiment are listed as follows: breadth of the section is 0.300 m, deadrise angle is 30◦, total weight of
the drop rig is 288 kg, the total length of the drop rig is 1.000 m and the length of the measuring section
is 0.100 m, on which the vertical force was measured. In the drop test shown in Fig. 9, the drop height is
0.13 m.
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As stated in the experiment report [23], the measured results have been filtered using a cut-off frequency
of 700 Hz and the oscillation of the results after low-pass filtering is due to the vibration of the drop rig
which supports the model during the tests. Because the vibrations are present even before the section
touches the calm water surface, they are probably excited when the rig is released. In spite of the oscilla-
tions, the mean lines of the experimental results can agree well with numerical results. Further, the vertical
motion and velocity will be less affected by the vibration and show a better agreement between theory and
experiments. The acceleration and vertical force reach their maximum values near the moment when the
spray root reaches the knuckle. Three-dimensional effects as analyzed in [21] can be applied to explain the
slightly overestimated force near this moment in Fig. 9(b).

5 Numerical results for planing vessels

After the verification and validation of the two-dimensional results, the 2D+t theory can be applied to
study the hydrodynamics of a prismatic planing vessel. Given the forward speed U of the planing hull, the
constant water-entry speed V in the 2D time-dependent problem can be obtained from Eq. 1. Then the
2D problem is solved by a time-marching procedure until time te which corresponds to the position of the
transom stern x = Lk. The spray-root line can be found in the numerical simulations, so the position xs can
be predicted. Because λw is also given, one can just use Eqs. 3 and 4 to calculate Lk and use Eq. 2 to obtain
te = Lk/U. When the total vertical force f (t) on a two-dimensional section with time is known, the vertical
force per unit length on the planing vessel is found by using Eq. 2. This force distribution can be integrated
to obtain the total vertical force and the pitch moment. The vertical force is defined to be positive in the
positive z-direction, and the pitch moment is about COG and defined positive in the positive y-direction,
i.e., positive pitch corresponds to bow up.

5.1 Comparison with experiments

Troesch [8] conducted experiments for prismatic planing vessels at low to moderate planing speeds. Both
steady and unsteady problems were studied. Here only the steady problem with different constant heave
or pitch (sinkage and trim) will be numerically simulated and the results of wetted lengths, forces and
moments will be compared with the experiments. The parameters in the tests that will be numerically
studied here, are given in Table 1.

The wetted lengths Lk/B, Lc/B and L/B varying with either constant heave displacement or constant
pitch displacement at FnB = 2.0 are shown in Fig. 10(a–b), respectively. If the mean wetted-length-beam
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Table 1 Parameters in the tests

Beam 0.318 m
Beam Froude number FnB = U/

√
gB 2.0, 2.5

Deadrise angle 20.0◦
Trim angle τ 0.0698 radian (or 4.0◦)
Mean wetted length-beam ratio λw 3.0
Position of gravity

lcg/B 1.47
vcg/B 0.65
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Fig. 10 Wetted lengths varying with constant heave or pitch at FnB = 2.0. Exp. means experimental results in [8];
Num. means numerical results. (a) For heave; (b) For pitch

ratio λw0 = L0/B at η3 = 0 and η5 = 0 is known, the mean wetted length at constant heave or pitch can
be predicted by

L(η3, η5) = lcg + vcg
tan(τ − η5)

− vcg cos(τ ) − (L0 − lcg) sin(τ ) + η3

sin(τ − η5)
. (15)

The corresponding Lk/B and Lc/B can then be obtained by substituting L from Eq. 15 and the numerically
predicted xs into Eqs. 3 and 4 and then solving these two equations. Good agreements are shown in the
figures.

Then the vertical forces and pitch moments at different heave or pitch are given in Fig. 11(a–d).
Experimental results by Troesch [8] and the results calculated by the empirical formula by Savitsky [4] are
shown together with the numerical results.

From those figures, one notes that the numerical results, denoted by ‘Numerical’, show the same trend
as the experimental and empirical results. However, the vertical forces are generally overestimated, while
the pitch moments agree better. The later discussions will indicate that the good agreement for the pitch
moment can be coincidental. The discrepancy between the numerical results and the experiments can be
due to three-dimensional effects neglected in the 2D+t theory.

3D effects can occur both at the bow and stern. In a planing problem, it also appears near the chine-wetted
position, where the chine wetting starts, i.e., x = xs, due to a sudden change of the increasing rate of the
wetted surface. The neglect of 3D effects often causes an overestimation of the pressure, which is believed
to be due to the fact that the energy is thus restrained in a more limited area.

Results after the 3D correction near the chine-wetted position are shown in the figures, as denoted
by ‘Some 3D correction’. The total forces decrease a little after this correction. However, the total pitch
moments decrease in some cases and increase in other cases. This is because the changed moment depends
on the position of the centre of action of the overestimated force relative to the centre of gravity. The
method to calculate 3D correction factors will be described in the next section. Although this correction



102 J Eng Math (2007) 58:91–107

-0,2         -0,1              0,0            0,1             0,2
0,00

0,05

0,10

0,15

0,20

F 3
/(ρ

U
2 B

2 )
F 3

/(ρ
U

2 B
2 )

F 5
/(ρ

U
2 B

3 )
F 5

/(ρ
U

2 B
3 )

η3/B
-0,2         -0,1              0,0            0,1             0,2

η3/B

 Troesch
 Numerical
 Some 3D correction 
 Suction force correction
 Savitsky

 Troesch
 Numerical
 Some 3D correction 
 Suction force correction
 Savitsky

 Troesch
 Numerical
 Some 3D correction 
 Suction force correction
 Savitsky

 Troesch
 Numerical
 Some 3D correction 
 Suction force correction
 Savitsky

-0,05

0,00

0,05

0,10

0,15

0,00

0,05

0,10

0,15

0,20

-3       -2         -1          0         1          2          3
-0,05

0,00

0,05

0,10

0,15

η5 (degree)
-3         -2         -1         0         1          2           3

η5 (degree)

(a) (b)

(d)(c)

Fig. 11 Vertical force and pitch moment versus constant heave or pitch displacement for FnB = 2.5. (a) Vertical force versus
heave η3/B; (b) Pitch moment versus heave η3/B; (c) Vertical force versus pitch η5; (d) Pitch moment versus pitch η5

cannot cause great improvements, it demonstrates the influence of the 3D effects near the chine-wetted
position.

There is a more significant 3D effect near the transom stern. Because the flow separates at the transom,
the pressure at the transom stern should be atmospheric. This means that the sum of the hydrostatic
and the hydrodynamic vertical force per unit length must decrease to zero at the stern. However, in the
2D+t calculation, the existence of the transom stern cannot be felt in the calculations ahead of it; thus the
forces will be overestimated in a certain area in front of the stern. Because the hydrodynamic pressure at
the transom stern must be negative to counteract the positive hydrostatic pressure in order to predict an
atmospheric pressure there, this effect is referred to a suction pressure in [28].

Faltinsen [1] presented an analysis of the local flow in the close vicinity of the separation point at the
transom by assuming 2D separated potential flow in the center plane. The predicted free-surface elevation
agrees well with Savitsky’s experimental results [29]. This theory will not match with the 2D+t theory, but
it indicates that there is a rapid decrease in the pressure in a narrow region near the transom on the hull.
Actually the pressure gradient is infinite at the transom stern.

In [30] a similar situation has been encountered. Steady vertical forces were calculated for a ship
with transom stern running at a length Froude number Fn = 1.14 and compared with the model tests by
Keuning [31]. The 2.5D results agreed well with the experiments except near the transom stern, where the
averaged force excluding buoyancy on the last segment in the model test was negative, while a positive
hydrodynamic force was predicted in the 2.5D solution. Hence they argued that there must be a rapid
decrease in the force near the transom stern. More recently, in the experiments about transom-stern flow
for high-speed vessels as given in [32], negative hydrodynamic pressures were also observed.

In order to estimate the magnitude of the suction-force effect at the stern, a similar approach as in [28]
is followed. Because the consequence of the suction force is a smaller loading in the vicinity of the transom
stern, this can be accounted for by using a smaller Lk in the calculation. As suggested in [28], reducing Lk
with 0.5B gives good correlation with Savitsky’s formula. The discussion was applied to a planing vessel
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with the same mean trim angle and mean wetted length-beam ratio as in the cases in Fig. 11. So the
same correction factor 0.5B is used in the present study. Results after such a correction are also shown in
Fig. 11(a–d), which is denoted as ‘Suction-force correction’. Vertical forces can then agree very well with
both the experiments and Savitsky’s formula, and the pitch moments agree better with Savitsky’s formula.
Because the 0.5B correction mainly account for the total force, not the force distribution, the correction
to the moment is questionable. Therefore it is hard to judge the agreements for the pitch moments here.
Nevertheless, the results with such a correction indicate that the suction-force effect is the most significant
reason for the discrepancy between numerical results and experiments.

The restoring-force coefficients can then be calculated by taking the derivative of force or moment in
each figure with respect to heave or pitch motion, i.e.,

Cij = −∂Fi

∂ηj
with i, j = 3, 5. (16)

From the figures, one can see that the slope of the curves formed by the numerical results can agree well
with the experimental results and empirical formula, even before the corrections. In Fig. 11(d) the slopes
of the experimental results are obviously different from those of the numerical results and the empirical
results for large pitch motions. Experimental errors may be the reason for such a discrepancy, as indicated
in [8]. From those figures, one can see that the restoring-force coefficients obtained from the numerical
results are obviously nonlinear and the coupling between heave and pitch is very significant.

5.2 Three-dimensional effects at very high Froude number

An analogy between the planing-surface problem and lifting-surface problem is used to estimate
three-dimensional effects at very high Froude number. Figure 12 shows the projection on the x−y plane of
the wetted surface of a planing vessel with trim angle τ moving at high speed U. To consider the influence
of the separated jet flow, an artificial body surface is introduced as plotted by the dashed line in the figure.
As shown in the right picture of Fig. 12, the beam is extended at both sides to the position of the spray root.
In the figure the ‘normal line’ is normal to the upper free surface and tangential to the spray-root curve.
The extension in half beam Be at the transom is given according to the 2D+t results; then the extension at
each cross-section just increases linearly from the chine-wetted position to the transom stern.

At very high Froude number, gravity is negligible and the free-surface condition is approximated as
ϕ = 0. On the real body surface the boundary condition is linearized as ∂ϕ/∂z = Uα, where the angle of
attack α = τ . On the artificial body surface the same boundary condition is applied, but finally the lift force
will be obtained by just integrating the pressure on the real body surface.

By imaging the body and the flow about the mean free surface, we can analyze a double body moving
in infinite fluid. Such a lifting problem can be solved in three dimensions by distributing vortices on the
projection of the body surface and the wake on the x−y plane so that the body boundary condition and the
Kutta condition at the trailing edge are satisfied. The general theory and numerical methods are described
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Fig. 13 Three-
dimensional effects in
very high speed planing
calculations
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in [33, Chapter 5] and [34, Chapter 12]. The problem can also be solved asymptotically by a slender-wing
theory using 2D results, as described in [34, pp. 212–222]. So the ratio between the results from these two
methods will be used as a three-dimensional correction factor.

The lift force distributions by both methods for an example of Lk/B = 3.8, xs/B = 1.6 and Be/B = 1.67
are shown in Fig. 13. Obvious 3D effects can be seen near the chine-wetted position and near the transom
stern. There is also a 3D effect near the bow, but it is not apparent in the figure because the numerical
model used here is quite simplified. However, the figure shows the tendency of the distribution of 3D
effects for the planing vessels at very high Froude number.

The predicted lift force should be zero at the transom stern. However, the 3D solution gives a finite value
there. This is due to a numerical error near the trailing edge. When using more panels near the trailing edge,
the finite value there will tend to zero. Thus, the suction-force effect as discussed before cannot be found
here because, for very high Froude number, gravity is totally neglected. In other words, the suction-force
effect is associated with gravity effects.

The sectional correction factor γ (x) = [
dL/dx

]
3D/

[
dL/dx

]
2D can then be obtained, in which 2D means

the solution obtained by the slender-wing theory. This sectional factor will be multiplied to the force-
distribution results by 2D+t to make the correction. However, the free-surface condition ϕ = 0 is not a
good approximation at moderate planing speed when the local Froude number Fnx = U/

√
gx is small, i.e.,

when the x-position is far from the bow. So the 3D correction is only made to the vertical force distribution
ahead of the chine-wetted position in each case in Fig. 11.

5.3 Gravity effects

Figure 14 shows the free-surface profiles around a planing vessel with the same parameters as in Fig. 11
at FnB = 5.0 and 2.5, which correspond to high and moderate planing speeds, respectively. Results for 10
successive cross-sections from x/B = 1.141 to x/B = 3.678 with interval �x/B = 0.282 are presented. At
the higher Froude number FnB = 5.0, spray runs up continuously from the bow to the stern and it reaches
very high in the air near the transom, which implies that the gravity effect is not so significant in this case.
However, at the lower Froude numberFnB = 2.5, the influence of gravity on the free-surface elevation
seems more apparent, because the spray does not run up very high and it then falls down.

Vertical force distributions along the x-coordinate are also calculated and shown in Fig. 15(a–c), in which
the hydrostatic forces are obtained by integrating the pressure term −ρgz on the wetted body surface below
the mean free surface, and the remaining force means the resulting force after the subtraction of the hydro-
static force from the total vertical force. The numerical calculations start with an initial submergence. So
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the force on the hull in front of the position about x/B = 0.8 is not shown in the figure. Because gravity is
insignificant on that part, the force distribution is calculated instead by using the similarity solution.

The influence of gravity on the vertical force can be seen from this figure. First the gravity effect is
negligible before the chine-wetted position, but it is more and more important when approaching the
transom stern. Second, the hydrostatic force is dominant after chine wetting for FnB = 2.5. However, for
FnB = 5.0 the remaining force is dominant all along, except that it is comparable with the hydrostatic
force near the stern. This means that gravity is more important in the case of moderate planing speed.
Third, the remaining forces for these two cases are similar but not equal. So gravity also influences the
hydrodynamic part of the force. This is because gravity will change the fluid flow around the hull and affect
the free-surface elevation, as one can see from Fig. 14. Therefore, simply adding the hydrostatic force to
the lift force obtained by neglecting gravity cannot fully account for the influence of gravity.

6 Conclusions

The hydrodynamic features of a prismatic planing hull in steady motion at moderate planing speed have
been studied. The gravity effect was fully considered in the numerical simulations. The 2D time-dependent
fully nonlinear problem of the water entry of a V-shaped body has been solved by a BEM. The thin jet,
spray and flow separation were properly treated in the numerical simulation. After the validation of the
2D theory and program, a 2D+t theory was applied to solve the steady planing problem. A reasonable
agreement between numerical and experimental results has been achieved. Three-dimensional effects were
estimated to qualitatively explain the discrepancy between theory and experiments. Finally, the influence
of gravity was discussed by comparing results for two different Froude numbers.
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It has been shown that the 2D numerical solver can give a good prediction of both the free-surface
elevation and the force. Both the jet-cut model and the spray cut-model were proved to be efficient, and
the flow separation model was shown to be valid when gravity is included.

The numerical solution of the planing problem of a prismatic planing hull by the 2D+t theory gives
overestimated vertical forces. However, the restoring-force coefficients can be well predicted. At moder-
ate planing speeds, free-surface elevation is not so violent as for high planing speeds and the hydrostatic
force will dominate at the rear part of the hull. Furthermore, gravity will influence the hydrodynamic force
as well.

3D effects near the chine-wetted position and the transom stern are believed to be the reason why the
vertical forces and moments predicted by 2D+t theory differ form the experimental and empirical results.
A simplified theory has been utilized to estimate some of the 3D effects, and a reduction of the keel-wetted
length by 0.5B was applied to estimate the influence of the 3D effects near the stern. However, more exact
correction methods are expected to give a better estimation of those 3D effects.

The current work can be easily generalized to planing hulls with varying cross-sections. However, to
study the unsteady motion of planing hulls, 2D time-dependent problems must be solved for many different
cross-sections, which demands much more computational efforts. On the other hand, the 2D+t solution can
be applied to semi-displacement hulls with transom stern at Froude numbers higher than 0.6 approximately.
The 3D effect at the transom stern will still be an important aspect.
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